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In reference [1], Ge and Lin studied the non-linear dynamics and control of an elliptical
pendulum on a vibrating basement. The pendulum is assumed to be a particle with mass m

B
connected to a block with mass m

A
. The angular damping of the system is of the Van der Pol

type. The vertical vibration of the horizontal plane is characterized by a periodic excitation
having an amplitude A and frequency u. Let x

A
be the displacement of the block and / the

angle between the vertical axis and the pendulum. With the de"nitions x
1
"x

A
, x

2
"xR

A
,

x
3
"/ and x

4
"/Q , the equations of motion can be written as [1]
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where g is the gravitational acceleration, l is the distance between the block and the particle,
and a and X are de"ned by
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The following numerical values of the parameters have been chosen: a"3, g"9)8,
X"0)863, k

1
"0)25, k

2
"0)3, m

B
"1, u"1, l"0)5. The parameters k

1
and k

2
characterize the damping e!ects (angular and horizontal). Ge and Lin reported numerical
results for the phase plots, period-¹ maps, bifurcation diagrams, power spectrum, Liapunov
exponents and basins of attraction for the amplitude A of the periodic excitation varying
between A"12)4 and 12)6, to investigate periodic and chaotic motion. They obtained
1¹-periodic motion for A"12)4, 2¹-periodic motion for A"12)5 with further period
doublings and chaotic behavior for A"12)6. A very interesting part of their work was
concerned with the control of chaotic motion.
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Figure 1. The bifurcation diagram for x
3

in the range 12)A)14: (a) including motion of Type I; (b) including
motion of Type II; (c) full diagram.
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By investigating the system (1) with the numerical values of the parameters mentioned
above, the author found some discrepancies with the results reported in reference [1].
Therefore, the bifurcation diagram for the angle x

3
"/ has been established for A varying

from A"12 to 14. Deleting the transient regime, the PoincareH section points for x
3

at
multiples of the period ¹"2nX/u of the excitation with respect to the parameter A are
plotted. Taking a "rst set of initial values for x

1
, x

2
, x

3
and x

4
, Figure 1(a) shows a very rich

pattern of alternating periodic and chaotic motions. At A+12)16 a 2P-periodic solution is
created. Its Fourier series includes only odd harmonics (symmetric solution). At A+12)82
a slight indent appears in the upper branch. The solution becomes asymmetric retaining the
same period. This 2P-solution (called solution of Type I) bifurcates to a 4P-solution at
A+12)94. Further doublings occur with resulting chaotic behavior at A+12)972. With
another choice for the initial conditions, the bifurcation diagram in Figure 1(b) is obtained.



Figure 2. Cascade of period-doubling bifurcations in the range 12)93)A)12)98: (a) for 2)15)x
3
)2)50;

(b) for 2)397)x
3
)2)409.
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Now at A+12)82 the indent appears on the lower branch continued by further
period-doubling solutions and chaotic behavior at A+12)972 (solutions of Type II). The
full bifurcation diagram consists of the superposition of both Figures 1(a) and (b) and is
represented in Figure 1(c). The parts from Figures 1(a) and (b) for 12)16)A)12)82 are
coincident. At A+12)82 the single 2¹-solution is continued by two coexisting
2¹-solutions. Each of the latter solutions undergoes a period doubling at A+12)94. One of
the splittings can only be seen by magni"cation.

Figure 2(a) yields a magni"cation of a small part of Figure 1(c) for A ranging from 12)93
to 12)98 with x

3
varying between 2)15 and 2)50 i.e., in the upper band. Two sequences of

period-doubling bifurcations occur. Hereby the distances between two consecutive
transition values diminish in accordance with Feigenbaum's relation [2]. Figure 2(b) is
a magni"cation of the upper part of Figure 2(a) whereby x

3
varies between 2)397 and 2)409

with the same range for A.
The conclusions derived from the bifurcation diagram 1(c) di!er from those derived from

Figure 4 in reference [1]. The motion at A"12)4 is 2P-periodic (mentioned as 1P-periodic
in reference [1]) and the bifurcation tree is found in the region from A"12)93 to 12)98
(mentioned from A"12)4 to 12)6 in Figure 4, reference [1]).

The results obtained by the author are con"rmed by applying one of the most reliable
criteria for determining the coexistence of periodic or chaotic attractors namely the study of
their basins of attraction. As explained in reference [3] one chooses a grid of initial
conditions in the phase and one integrates the system (1) for each set of initial conditions.
Thus, one determines the periodic and chaotic attractors which are reached by the orbit.
Di!erent gray levels are assigned to each initial condition in conjunction with the relevant
attractor that is approached. Figures 3(a) and (b) show the basins of attraction for the cases
with A"12)93 and 12)98 respectively. They are obtained by using Nusse and Yorke's
package DYNAMICS [4] with a 400]400 grid of pixels in the regions !n)x

3
)n and

!4)5)x
4
)4)5 (taking x

1
"1 and x

2
"0). In each case there are two coexisting basins.

The domains of attraction are marked in light gray for motion of Type I and in dark gray
for motion of Type II. For A"12)93 two periodic attractors occur both with the period 2¹.
The PoincareH section points at t"0 have symmetric positions in the x

3
x
4
-plane and are



Figure 3. Basins of attraction in the phase plane x
3
x
4

with !n)x
3
)n and !4)5)x

4
)4)5: (a) A"12)93

(two coexisting periodic attractors both having the period 2¹); (b) A"12)98 (two coexisting chaotic attractors
indicated in black and in white). Used gray levels for basins: light gray for motion of Type I and dark gray for
motion of Type II.

766 LETTERS TO THE EDITOR
given by

Type I (2)3265,!1)2873), (!2)4040,!0)7834),

Type II (2)4040, 0)7834), (!2)3265, 1)2873).

Fractal areas in the initial condition plane x
3
x
4

occur near x
3
"0 and near x

3
"$n. The

pattern of the basins of attraction as represented in Figure 3(a) is rather similar for all cases
with A varying from 12)82 to 12)98 in the sequences of the period-doubling bifurcations. For
the case A"12)98 (see Figure 3(b)) two coexisting chaotic attractors, generated by
consequent period-doubling bifurcations starting with 2¹-periodic motion, are found. Both
chaotic attractors consist of two parts and are represented in black and in white.

For A"12)4 and 12)5 the author obtains a single basin of attraction "lling the whole
x
3
x
4
-plane under consideration whereby the two PoincareH section points represent one

single 2¹-solution.
Hence, the results for the basins of attraction con"rm our "ndings on the bifurcation

diagrams reported above. In their comment on Figure 7(a) for A"12)4, Ge and Lin [1]
mention the occurrence of two stable periodic solutions, both having the period 1¹. They
used the modi"ed interpolated cell mapping method [5].

The numerical results obtained by the use of the package DYNAMICS [4] have been
con"rmed by applying the numerical techniques explained in reference [6] based on the
Runge}Kutta}Hu\ ta method [7] of order six which is a very accurate integration scheme.
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