COMMENTS ON "REGULAR AND CHAOTIC DYNAMIC ANALYSIS AND CONTROL OF CHAOS OF AN ELLIPTICAL PENDULUM ON A VIBRATING BASEMENT"

R. Van Dooren
Department of Mechanical Engineering, Free University of Brussels, Pleinlaan 2, B-1050 Brussels, Belgium. E-mail: rvdooren@vub.ac.be

(Received 26 January 2001)

In reference [1], Ge and Lin studied the non-linear dynamics and control of an elliptical pendulum on a vibrating basement. The pendulum is assumed to be a particle with mass m_{B} connected to a block with mass m_{A}. The angular damping of the system is of the Van der Pol type. The vertical vibration of the horizontal plane is characterized by a periodic excitation having an amplitude A and frequency ω. Let x_{A} be the displacement of the block and ϕ the angle between the vertical axis and the pendulum. With the definitions $x_{1}=x_{A}, x_{2}=\dot{x}_{A}$, $x_{3}=\phi$ and $x_{4}=\dot{\phi}$, the equations of motion can be written as [1]

$$
\begin{align*}
\dot{x}_{1}= & x_{2}, \\
\dot{x}_{2}= & {\left[l x_{4}^{2} \sin x_{3}+\left(g / \Omega^{2}\right) \sin x_{3} \cos x_{3}-\left(k_{2} / \Omega m_{B}\right) x_{2}+\left(k_{1} / \Omega m_{B} l\right)\left(x_{3}^{2}-1\right) x_{4} \cos x_{3}\right.} \\
& \left.-A(\omega / \Omega)^{2} \sin x_{3} \cos x_{3} \sin (\omega \tau / \Omega)\right] /\left(a-\cos ^{2} x_{3}\right), \\
\dot{x}_{3}= & x_{4}, \\
\dot{x}_{4}= & {\left[-\left(a g / \Omega^{2} l\right) \sin x_{3}-x_{4}^{2} \sin x_{3} \cos x_{3}-\left(a k_{1} / \Omega m_{B} l^{2}\right)\left(x_{3}^{2}-1\right) x_{4}+\left(k_{2} / \Omega m_{B} l\right) x_{2}\right.} \\
& \left.\cos x_{3}+\left(A a \omega^{2} / \Omega^{2} l\right) \sin x_{3} \sin (\omega \tau / \Omega)\right] /\left(a-\cos ^{2} x_{3}\right), \tag{1}
\end{align*}
$$

where g is the gravitational acceleration, l is the distance between the block and the particle, and a and Ω are defined by

$$
a=\left(m_{A}+m_{B}\right) / m_{B}, \quad \Omega=(1 / 2 \pi)\left[\left(m_{A}+m_{B}\right) g / m_{A} l\right]^{1 / 2} .
$$

The following numerical values of the parameters have been chosen: $a=3, g=9 \cdot 8$, $\Omega=0.863, k_{1}=0.25, k_{2}=0 \cdot 3, m_{B}=1, \omega=1, l=0 \cdot 5$. The parameters k_{1} and k_{2} characterize the damping effects (angular and horizontal). Ge and Lin reported numerical results for the phase plots, period- T maps, bifurcation diagrams, power spectrum, Liapunov exponents and basins of attraction for the amplitude A of the periodic excitation varying between $A=12.4$ and $12 \cdot 6$, to investigate periodic and chaotic motion. They obtained $1 T$-periodic motion for $A=12 \cdot 4,2 T$-periodic motion for $A=12 \cdot 5$ with further period doublings and chaotic behavior for $A=12 \cdot 6$. A very interesting part of their work was concerned with the control of chaotic motion.

Figure 1. The bifurcation diagram for x_{3} in the range $12 \leqslant A \leqslant 14$: (a) including motion of Type I ; (b) including motion of Type II; (c) full diagram.

By investigating the system (1) with the numerical values of the parameters mentioned above, the author found some discrepancies with the results reported in reference [1]. Therefore, the bifurcation diagram for the angle $x_{3}=\phi$ has been established for A varying from $A=12$ to 14 . Deleting the transient regime, the Poincare section points for x_{3} at multiples of the period $T=2 \pi \Omega / \omega$ of the excitation with respect to the parameter A are plotted. Taking a first set of initial values for x_{1}, x_{2}, x_{3} and x_{4}, Figure 1(a) shows a very rich pattern of alternating periodic and chaotic motions. At $A \approx 12.16$ a $2 P$-periodic solution is created. Its Fourier series includes only odd harmonics (symmetric solution). At $A \approx 12.82$ a slight indent appears in the upper branch. The solution becomes asymmetric retaining the same period. This $2 P$-solution (called solution of Type I) bifurcates to a $4 P$-solution at $A \approx 12.94$. Further doublings occur with resulting chaotic behavior at $A \approx 12.972$. With another choice for the initial conditions, the bifurcation diagram in Figure 1(b) is obtained.

Figure 2. Cascade of period-doubling bifurcations in the range $12 \cdot 93 \leqslant A \leqslant 12 \cdot 98$: (a) for $2 \cdot 15 \leqslant x_{3} \leqslant 2 \cdot 50$; (b) for $2 \cdot 397 \leqslant x_{3} \leqslant 2 \cdot 409$.

Now at $A \approx 12.82$ the indent appears on the lower branch continued by further period-doubling solutions and chaotic behavior at $A \approx 12.972$ (solutions of Type II). The full bifurcation diagram consists of the superposition of both Figures 1(a) and (b) and is represented in Figure 1(c). The parts from Figures 1(a) and (b) for $12 \cdot 16 \leqslant A \leqslant 12 \cdot 82$ are coincident. At $A \approx 12.82$ the single $2 T$-solution is continued by two coexisting $2 T$-solutions. Each of the latter solutions undergoes a period doubling at $A \approx 12 \cdot 94$. One of the splittings can only be seen by magnification.

Figure 2(a) yields a magnification of a small part of Figure 1(c) for A ranging from $12 \cdot 93$ to 12.98 with x_{3} varying between 2.15 and 2.50 i.e., in the upper band. Two sequences of period-doubling bifurcations occur. Hereby the distances between two consecutive transition values diminish in accordance with Feigenbaum's relation [2]. Figure 2(b) is a magnification of the upper part of Figure 2(a) whereby x_{3} varies between 2.397 and 2.409 with the same range for A.

The conclusions derived from the bifurcation diagram 1(c) differ from those derived from Figure 4 in reference [1]. The motion at $A=12.4$ is $2 P$-periodic (mentioned as $1 P$-periodic in reference [1]) and the bifurcation tree is found in the region from $A=12.93$ to 12.98 (mentioned from $A=12.4$ to 12.6 in Figure 4, reference [1]).

The results obtained by the author are confirmed by applying one of the most reliable criteria for determining the coexistence of periodic or chaotic attractors namely the study of their basins of attraction. As explained in reference [3] one chooses a grid of initial conditions in the phase and one integrates the system (1) for each set of initial conditions. Thus, one determines the periodic and chaotic attractors which are reached by the orbit. Different gray levels are assigned to each initial condition in conjunction with the relevant attractor that is approached. Figures 3(a) and (b) show the basins of attraction for the cases with $A=12.93$ and 12.98 respectively. They are obtained by using Nusse and Yorke's package DYNAMICS [4] with a 400×400 grid of pixels in the regions $-\pi \leqslant x_{3} \leqslant \pi$ and $-4 \cdot 5 \leqslant x_{4} \leqslant 4 \cdot 5$ (taking $x_{1}=1$ and $x_{2}=0$). In each case there are two coexisting basins. The domains of attraction are marked in light gray for motion of Type I and in dark gray for motion of Type II. For $A=12 \cdot 93$ two periodic attractors occur both with the period $2 T$. The Poincaré section points at $t=0$ have symmetric positions in the $x_{3} x_{4}$-plane and are

Figure 3. Basins of attraction in the phase plane $x_{3} x_{4}$ with $-\pi \leqslant x_{3} \leqslant \pi$ and $-4.5 \leqslant x_{4} \leqslant 4.5:(a) A=12.93$ (two coexisting periodic attractors both having the period $2 T$); (b) $A=12 \cdot 98$ (two coexisting chaotic attractors indicated in black and in white). Used gray levels for basins: light gray for motion of Type I and dark gray for motion of Type II.
given by
Type I $(2 \cdot 3265,-1 \cdot 2873),(-2 \cdot 4040,-0 \cdot 7834)$,
Type II ($2 \cdot 4040,0 \cdot 7834),(-2 \cdot 3265,1 \cdot 2873)$.
Fractal areas in the initial condition plane $x_{3} x_{4}$ occur near $x_{3}=0$ and near $x_{3}= \pm \pi$. The pattern of the basins of attraction as represented in Figure 3(a) is rather similar for all cases with A varying from 12.82 to $12 \cdot 98$ in the sequences of the period-doubling bifurcations. For the case $A=12.98$ (see Figure 3(b)) two coexisting chaotic attractors, generated by consequent period-doubling bifurcations starting with $2 T$-periodic motion, are found. Both chaotic attractors consist of two parts and are represented in black and in white.

For $A=12.4$ and 12.5 the author obtains a single basin of attraction filling the whole $x_{3} x_{4}$-plane under consideration whereby the two Poincaré section points represent one single $2 T$-solution.

Hence, the results for the basins of attraction confirm our findings on the bifurcation diagrams reported above. In their comment on Figure 7(a) for $A=12 \cdot 4$, Ge and Lin [1] mention the occurrence of two stable periodic solutions, both having the period $1 T$. They used the modified interpolated cell mapping method [5].

The numerical results obtained by the use of the package DYNAMICS [4] have been confirmed by applying the numerical techniques explained in reference [6] based on the Runge-Kutta-Hǔta method [7] of order six which is a very accurate integration scheme.

REFERENCES

1. Z. M. Ge and T. N. Lin 2000 Journal of Sound and Vibration 230, 1045-1068. Regular and chaotic dynamic analysis and control of chaos of an elliptical pendulum on a vibrating basement.
2. M. J. Feigenbaum 1980 Los Alamos Science 1, 4-27. Universal behavior in nonlinear systems.
3. C. Pezeshki and E. H. Dowell 1988 Physica D 32, 194-209. On chaos and fractal behavior in a generalized Duffing's system.
4. H. E. Nusse and J. A. Yorke 1998 Dynamics: Numerical Explorations. New York: Springer; second edition.
5. Z. M. Ge and S. C. Lee 1997 Journal of Sound and Vibration 199, 189-206. A modified interpolated cell mapping.
6. R. Van Dooren 1996 Chaos, Solitons and Fractals 7, 77-90. Chaos in a pendulum with forced horizontal support motion: a tutorial.
7. J. D. Lambert 1973 Computational Methods in Ordinary Differential Equations. Chichester: John Wiley.
